Comments on the X11R6.3 Configuration Files and Bgrams

Paul DuBois
dubois@primatavisc.edu
1 January 1997

I’ve been looking wer the X11R6.3 configuration files and programs angmaticed some imprements
over previous releases, as well as some things | find puzzling or that seemmdi I’'mposting my obser
vations here in hopes of eliciting discussion that will clarify things | donderstand. Alsol, admit that
these comments are a little propadistic, because | suggest some changes that véelirild be useful.

Configuration File Changes

Ar chitecture Comments

The configuration file architecture has changéd now something lile this:

I make. t npl :
I make. cf
site.def (w th BeforeVendor CF defined)
Macrol ncl udeFile (i.e., vendor.cf)
site.def (with AfterVendor CF defi ned)
I make. rul es
nost system paraneters
ProjectRulesFile (e.g., Xl1.rules)
Local Rul esFil e
ProjectTnpl File (e.g., Xll.tnpl)
Local Tnpl Fil e
I mekefile

Imaketmpl no longer include®r oj ect . t npl ; instead it includes the twfiles named by ther oj ec-

t Rul esFi | e andPr oj ect Tnpl Fi | e macros. Thigpretty well completes the separation of system and

project information, where system information is founthiake tmplandimakeruleson the one hand, and
project information is found in project-specific file€l{L.rules X11.tmp) on the other This process lgn
in X11R4 (when the tavtypes of information were stillary much intertwined), and noseems to be virtu-
ally complete. This clearer separation of system and project-specific information shoutdingakier to
generate Makfiles for Motif or for CDE:

e« To generate Matfiles for Motif, define Proj ect Rul esFile and ProjectTnpl File as

<Mbti f.rul es>and<Mti f.tnpl > The X11 rules and template files will still be used, because

Motif.rulesincludesX11.rulesandMotif.tmplincludesX11.tmpl

e Similarly, to generate Madfiles for CDE, defin®r oj ect Rul esFi | e andProj ect Tnpl Fi | e as

<cde. rul es> and<cde. t npl >. The Motif and X11 rules and template files will still be used,

becausederulesincludesMotif.rules (and thusX11.rule3, andcdetmplincludesMotif.tmpl (and thus
X11.tmp).

If you could simply redefinér oj ect Rul esFi | e andPr oj ect Tnpl Fi | e in sitedef it'd be quite

easy to use diérent project files.Unfortunately it seems to be more complicated than is necessary

Imake tmpl contains a section that looksdikhis:

#i f ndef TopLevel Proj ect

define TopLevel Proj ect X11

#endi f

#i f ndef ProjectRul esFile

define ProjectRulesFile Concat 3(<, TopLevel Proj ect, . rul es>)
#endi f

#i ncl ude ProjectRul esFile

#i fndef ProjectTnplFile

#define ProjectTnpl File Concat 3(<, TopLevel Proj ect, . tnpl >)
#endi f

#include ProjectTnpl File

The idea here, | think, is that tdfedt hav Pr oj ect Rul esFi | e andPr oj ect Tnpl Fi | e are defined,
you only hae redefineTopLevel Proj ect, eg., insitedef Unfortunately when we look asitedef
we see this:

/* On systens where cpp doesn’t expand correctly macros in include directives
* the two follow ng macros need to be defined directly (where "X11" is
* really whatever the TopLevel Project macro is defined to be).
*/
if defined(SunArchitecture) || defined(Al XArchitecture) \
|| defined(USLArchitecture) || defined(UXPArchitecture) \
|| defined(SCQArchitecture)

ifndef ProjectRulesFile

define ProjectRulesFile <X11.rul es>
endif

ifndef ProjectTnplFile

define ProjectTnpl File <X11.tnpl>
endif

endif

So it seems that there are a lot of systems for which redefininGothleevel Pr oj ect macro von't
work. (Andwho knavs whether the list ofalulty systems is complete, since R6.3 hidseén tested on all
systems for which there is\aendorcf file.) Theupshot? © use diferent project files, you must kwo
whether you can s@topLevel Proj ect, or whether you hee o st Pr oj ect Rul esFi | e andPr o-

j ect Tnpl Fi | e directly instead.

It seems to me that this could simplasth in terms of what goes in the configuration files, and for people

who are trying to figure out koto use the files.How? JunkTopLevel Proj ect entirely and vark only
with Pr oj ect Rul esFi | e andPr oj ect Tnpl Fi | e. That would male the section inmake tmpl look
like this:

#i fndef ProjectRulesFile

define ProjectRulesFile <X11l.rules> /* or maybe <noop.rul es> */
#endi f

#i nclude ProjectRulesFile

#i fndef ProjectTnpl File

define ProjectTnpl File <X11l.t npl > /* or maybe <noop.rul es> */
#endi f

#include ProjectTnpl File

And the section isitedefwould look like this:

/*
* Redefine these values to use different project-specific files
*/

#i fndef ProjectRulesFile

define ProjectRulesFile <X11.rul es>

#endi f

#i fndef ProjectTnplFile

define ProjectTnpl File <X11.t npl >

#endi f

Now theres ro decision to ma& &out whether to redefinBopLevel Proj ect or not, and i dearer
what to do to use the Motif or CDE files: redefiPreoj ect Rul esFi | e andPr oj ect Tnpl Fi |l e in
sitedef In addition, since this suggested change eliminates(¥¥Ar chi t ect ur e tests, it has none of
the system-dependent dttliat is in the original machinery

A side efect of introducingPr oj ect Rul esFil e and Proj ect Tnpl Fi | e into the architecture
appears to be thatocal Rul esFi | e andLocal Tnpl Fi | e are efectively vestigial nav. They were
introduced in R6 as aay of allaving the architecture to accommodate the Motif configuration files: to
cause the Motif files to be processed, gaquit the follaving in sitedet

#define Local Rul esFile <Motif.rul es>
#define Local Tnpl File <Motif.tnpl>

The nev Motif files themseles include the relant X11 files, so you can moachieve the same ééct by
redefiningPr oj ect Rul esFi | e andProj ect Tnpl Fi | e instead. Asa result,Local Rul esFi |l e
andLocal Tnpl Fi | e appear to be unnecessaty there still some use for the lattercwacros?

Other Configuration File Comments

e X11.rulesdoesnt contain ay rules! Wty is the stufin that file there and not iM11.tmp?P

e Imakerules up through R6.1 has defin€énpl exPr ogr anirar get _1() throughConpl exPr o-
gramrar get _3() rules, andConpl exPr ogr anifar get _1() has defined th€BJS and SRCS
variables in terms oOBJS1 throughOBJS3 and SRCS1 throughSRCS3. There are n@ additional
rules Conpl exPr ogr amrar get _4() through Conpl exPr ogr anirar get 10(), and Com
pl exPrograniarget 1() definesOBJS and SRCS in terms of OBJS1 through OBJS10 and
SRCS1 throughSRCS10. (The C++ rules hae been atended in a similar ay.)

e X11.tmpldefines the ariablesDEPLI BS1 throughDEPLI BS10, rather than jusDEPLI BS1 through
DEPLI BS3 that the oldProject.tmplused to define(This change parallels tHenakerules changes
discussed in the preceding item ahd However, Motif.tmpl still defines onlyDEPLI BS1 through
DEPLI BS3. (On the other hand, sin¢€ll.tmplalready defines all thBEPLI BSn variables, its not
clear to me wh Motif.tmpldefines ap DEPLI BSn variables at all.)

* Motif.tmplno longer messes around witWAKE _CVD; that's good.

» Recent Motif distrilutions that hee included R5-based configuration files used generator macros to
construct ariable names for referring to librarieslowever, those macros were incompatible with the
generator macros used in the X11 configuration files from RérbeMotif.tmpl that ships with R6.3
uses the same generator macros that are usedhelgein the R6.3 configuration fileFhat's good,
too.

« In the configuration files that¥é sen ship with Motif thusafr, Usel nst al | edMot i f is a macro
that has been either defined or left undefinkedthe Motif.tmpl that ships with the R6.3 configuration
files,Usel nst al | edMot i f has become a Booleavi§S/ NO) macro.

e Uselnstal |l edX11 is a Boolean macro (i.e., hasY&S or NO value), in contrast tdJsel n-
st al | ed, which is either defined or left undefinedhis is a bit inconsistent perhapslaybe thats
what leads to what appears to be a problenibmLib.rules and ibmLibtmpt they test Usel n-
st al | edX11 on the basis of whether or nositkfined, rather than testing italue. Somether sim-
ilar inconsistencies (which may bads) are:

e Usel nports andl nport X11 are also BooleanYES/ NO) macros. Havever, ibmLib.rulesand
ibmLib.tmpltest each of them on the basis of whether or ngtheefined, rather than testing their
value.

« Motif.tmpl testsUsel nport s using#i f def Usel nports at one point andti f Usel m
port s at another

» Since anmal | : : tamget entry is n& generated right at the pmning ofImaketmpl, it's no longer neces-
sary for theenpt yt arget : : to be generated near the endlimilketmpl. The latter entry can be
removed.

» The_XuUsed() and_XUseCat () rules inImakerules seem to hee problematic definitions.They
make decisions based on thalue ofUsel nst al | edX11. But Usel nst al | edX11 is defined in
X11.rules which is processed afténalkerules

» BUG? The leading comments Bitedefappear to advise that tié&{ Maj or, M nor, Teeny} Ver -
si on macros can be changedsitedef and also that theshould not be changed sitedet

Program Changes

imake

imake now provides a means of yanking the operating system majioor, and teery version numbers
using theunane() system call. It then passes thosealues tocpp so that theOSMaj or Ver si on,
OSM nor Ver si on, and OSTeenyVer si on macros can be set automaticallyhis is good, because you
don't haveto set the &lues in your gndor files manuallyHowevae, | think the method by which this is
done could be simplet’l | describe hw it's actually done, and then tadl think it could be simplified.

To useunane() to get the OSersion numbers, you add a sectionn@akemdep.hhat describes hoto
process thenane() return\alue on your systenmkor instance, the FreeBSD section looks likis:

/[* uname -r returns "x.y[.z]-munble", e.g. "2.1.5-RELEASE" or "2.2-0801SNAP" */
define DEFAULT _OS MAJOR REV "r 9%0-9]"

define DEFAULT _OS MNOR REV "r %d.%0-9]"

define DEFAULT _OS TEENY REV "r %d. % d. % 0-9]"

If the DEFAULT _OS_XXX_REV macros are definednake callsunane() and pulls apart the returaie
using thescanf () patterns in the macralues. Theiit writes lines lile the following to Imakefilec:

#defi ne Def aul t OSMaj or Ver si on 2
#defi ne Def aul t OSM nor Version 1
#defi ne Def aul t OSTeenyVersion 5

By themseles, these definitions are not usab®o it's recessary to modify yourewmdor file as well.In
R6.1, the OSersion numbers were set iandor files using constructs dithese:

#i f ndef OSMaj or Ver si on

#def i ne OSMaj or Ver si on 2
#endi f

#i f ndef OSM nor Ver si on

#defi ne OSM nor Ver si on 1
#endi f

#i f ndef OSTeenyVersi on

#def i ne OSTeenyVer si on 0
#endi f

For R6.3, these must be changed as fe$io

#i f ndef OSMaj or Ver si on

#def i ne OSMaj or Ver si on Def aul t OSMaj or Ver si on
#endi f

#i f ndef OSM nor Ver si on

#defi ne OSM nor Ver si on Def aul t OSM nor Ver si on
#endi f

#i f ndef OSTeenyVersion

#def i ne OSTeenyVer si on Def aul t OSTeenyVer si on
#endi f

The result is that wheimake runs, it passes definitions of tief aul t OSXXXVer si on macros via
Imalefilec, and those alues are used to set tBEXXXVer si on macros.

| think theuname() support is a good thingubl suggest that the implementation could be simpi¢gre
imalke to write definitions intdmalkefilec for the OSXXXVer si on macros, rather than for tief aul t -
OSXXXVer si on macros, it wuld be necessary only to put to@manme() stuff in imakemdep.h It
wouldn’t be necessary to change thendor files at all. That's because in R6.1 theemdor files were
already set up to allothe OSXXXVer si on macros to beerridden by prior definitions!f imake defined
the OSXXXVer si on macros itself, its definitionsauld tale precedence.

This would allov theimake to provide override values for the ersion numbers, yet ailothe vendor files to
be left just as thewere in R6.1.As it is naw, there is a tight dependgnbetween modifyingmakemdep.h
and changing theandor file and to match.

I’'m curious as to withe additional compiety introduced by théef aul t OSXXXVer si on macros vas
used. Ighere some benefit to requiring a change to émelor file whenmakemdep.hs changed?

Suggestion: Thoseendor files that hee been changed to use tixef aul t OSXXXVer si on macros
should be "unchanged", amtdake should define th€©SXXXVer si on macros insteadThis would male

extending theuname() support mechanism to other systems an easier and lesspremer process
because fger changes auld be needed.

Another aspect of the currenhanme() mechanism is that its use Def aul t OSXXXVer si on makes
the R6.3 configuration files incompatible with all\poeis \ersions ofimake, even recent R6.x grsions.
The suggested change aito the R6.3 configuration files to continue torkwith ary R6.x version of
imale.

Question: Hav does one parse this bit of dtéifom imake c?

* 5. Start up cpp and provide it with this file.

* Note that the define for | NCLUDE_| MAKEFILE is intended for
* use inthe tenplate file. This inplies that the inmake is

* useless unless the tenplate file contains at least the line
* #i ncl ude | NCLUDE_| MAKEFI LE

What should the phrase "the ingaik useless" really be?The resulting Makfile is useless"?
makedepend

malkedependow properly ezaluates macros that are defined as tmnstants. Brmerly these alays eval-
uated as zeroThis meant that in a code fragment such as thewollpy CONST1 would evaluate as zero
andar.h would not be considered a dependebg maledepend

#define CONST1 Ox1

#i f CONST1
#i ncl ude <ar. h>
#endi f

