
Comments on the X11R6.3 Configuration Files and Programs

Paul DuBois
dubois@primate.wisc.edu

1 January, 1997

I’ ve been looking over the X11R6.3 configuration files and programs and have noticed some improvements
over previous releases, as well as some things I find puzzling or that seem like bugs. I’mposting my obser-
vations here in hopes of eliciting discussion that will clarify things I don’t understand. Also,I admit that
these comments are a little propagandistic, because I suggest some changes that I believe would be useful.

Configuration File Changes

Ar chitecture Comments

The configuration file architecture has changed.It’s now something like this:

Imake.tmpl:
Imake.cf
site.def (with BeforeVendorCF defined)
MacroIncludeFile (i.e., vendor.cf)
site.def (with AfterVendorCF defined)
Imake.rules
most system parameters
ProjectRulesFile (e.g., X11.rules)
LocalRulesFile
ProjectTmplFile (e.g., X11.tmpl)
LocalTmplFile
Imakefile

Imake.tmpl no longer includesProject.tmpl; instead it includes the two files named by theProjec-
tRulesFile andProjectTmplFile macros. Thispretty well completes the separation of system and
project information, where system information is found inImake.tmpl andImake.ruleson the one hand, and
project information is found in project-specific files (X11.rules, X11.tmpl) on the other. This process began
in X11R4 (when the two types of information were still very much intertwined), and now seems to be virtu-
ally complete.This clearer separation of system and project-specific information should make it easier to
generate Makefiles for Motif or for CDE:

• To generate Makefiles for Motif, define ProjectRulesFile and ProjectTmplFile as
<Motif.rules> and<Motif.tmpl>. The X11 rules and template files will still be used, because
Motif.rulesincludesX11.rulesandMotif.tmpl includesX11.tmpl.

• Similarly, to generate Makefiles for CDE, defineProjectRulesFile andProjectTmplFile as
<cde.rules> and<cde.tmpl>. The Motif and X11 rules and template files will still be used,
becausecde.rules includesMotif.rules(and thusX11.rules), andcde.tmpl includesMotif.tmpl (and thus
X11.tmpl).

If you could simply redefineProjectRulesFile andProjectTmplFile in site.def, it’d be quite
easy to use different project files.Unfortunately, it seems to be more complicated than is necessary.
Imake.tmplcontains a section that looks like this:

- 2 -

#ifndef TopLevelProject
define TopLevelProject X11
#endif
#ifndef ProjectRulesFile
define ProjectRulesFile Concat3(<,TopLevelProject,.rules>)
#endif
#include ProjectRulesFile

#ifndef ProjectTmplFile
#define ProjectTmplFile Concat3(<,TopLevelProject,.tmpl>)
#endif
#include ProjectTmplFile

The idea here, I think, is that to affect how ProjectRulesFile andProjectTmplFile are defined,
you only have to redefineTopLevelProject, e.g., insite.def. Unfortunately, when we look atsite.def,
we see this:

/* On systems where cpp doesn’t expand correctly macros in include directives
* the two following macros need to be defined directly (where "X11" is
* really whatever the TopLevelProject macro is defined to be).
*/
if defined(SunArchitecture) || defined(AIXArchitecture) \

|| defined(USLArchitecture) || defined(UXPArchitecture) \
|| defined(SCOArchitecture)

ifndef ProjectRulesFile
define ProjectRulesFile <X11.rules>
endif
ifndef ProjectTmplFile
define ProjectTmplFile <X11.tmpl>
endif
endif

So it seems that there are a lot of systems for which redefining theTopLevelProject macro won’t
work. (And who knows whether the list of faulty systems is complete, since R6.3 hasn’t been tested on all
systems for which there is avendor.cf file.) The upshot? To use different project files, you must know
whether you can setTopLevelProject, or whether you have to set ProjectRulesFile andPro-
jectTmplFile directly instead.

It seems to me that this could simpler, both in terms of what goes in the configuration files, and for people
who are trying to figure out how to use the files.How? JunkTopLevelProject entirely and work only
with ProjectRulesFile andProjectTmplFile. That would make the section inImake.tmpl look
like this:

#ifndef ProjectRulesFile
define ProjectRulesFile <X11.rules> /* or maybe <noop.rules> */
#endif
#include ProjectRulesFile

#ifndef ProjectTmplFile
define ProjectTmplFile <X11.tmpl> /* or maybe <noop.rules> */
#endif
#include ProjectTmplFile

And the section insite.defwould look like this:

/*
* Redefine these values to use different project-specific files
*/
#ifndef ProjectRulesFile
define ProjectRulesFile <X11.rules>
#endif
#ifndef ProjectTmplFile
define ProjectTmplFile <X11.tmpl>
#endif

- 3 -

Now there’s no decision to make about whether to redefineTopLevelProject or not, and it’s clearer
what to do to use the Motif or CDE files: redefineProjectRulesFile andProjectTmplFile in
site.def. In addition, since this suggested change eliminates theXXXArchitecture tests, it has none of
the system-dependent stuff that is in the original machinery.

A side effect of introducingProjectRulesFile and ProjectTmplFile into the architecture
appears to be thatLocalRulesFile andLocalTmplFile are effectively vestigial now. They were
introduced in R6 as a way of allowing the architecture to accommodate the Motif configuration files: to
cause the Motif files to be processed, you’d put the following in site.def:

#define LocalRulesFile <Motif.rules>
#define LocalTmplFile <Motif.tmpl>

The new Motif files themselves include the relevant X11 files, so you can now achieve the same effect by
redefiningProjectRulesFile and ProjectTmplFile instead. Asa result,LocalRulesFile
andLocalTmplFile appear to be unnecessary. Is there still some use for the latter two macros?

Other Configuration File Comments

• X11.rulesdoesn’t contain any rules! Why is the stuff in that file there and not inX11.tmpl?

• Imake.rules up through R6.1 has definedComplexProgramTarget_1() throughComplexPro-
gramTarget_3() rules, andComplexProgramTarget_1() has defined theOBJS andSRCS
variables in terms ofOBJS1 throughOBJS3 andSRCS1 throughSRCS3. There are now additional
rules ComplexProgramTarget_4() through ComplexProgramTarget_10(), and Com-
plexProgramTarget_1() definesOBJS and SRCS in terms ofOBJS1 throughOBJS10 and
SRCS1 throughSRCS10. (The C++ rules have been extended in a similar way.)

• X11.tmpldefines the variablesDEPLIBS1 throughDEPLIBS10, rather than justDEPLIBS1 through
DEPLIBS3 that the oldProject.tmplused to define.(This change parallels theImake.rules changes
discussed in the preceding item above.) However, Motif.tmpl still defines onlyDEPLIBS1 through
DEPLIBS3. (On the other hand, sinceX11.tmplalready defines all theDEPLIBSn variables, it’s not
clear to me why Motif.tmpldefines any DEPLIBSn variables at all.)

• Motif.tmplno longer messes around withIMAKE_CMD; that’s good.

• Recent Motif distributions that have included R5-based configuration files used generator macros to
construct variable names for referring to libraries.However, those macros were incompatible with the
generator macros used in the X11 configuration files from R6 on.TheMotif.tmpl that ships with R6.3
uses the same generator macros that are used elsewhere in the R6.3 configuration files.That’s good,
too.

• In the configuration files that I’ve seen ship with Motif thus far, UseInstalledMotif is a macro
that has been either defined or left undefined.In theMotif.tmpl that ships with the R6.3 configuration
files,UseInstalledMotif has become a Boolean (YES/NO) macro.

• UseInstalledX11 is a Boolean macro (i.e., has aYES or NO value), in contrast toUseIn-
stalled, which is either defined or left undefined.This is a bit inconsistent perhaps.Maybe that’s
what leads to what appears to be a problem inibmLib.rules and ibmLib.tmpl: they test UseIn-
stalledX11 on the basis of whether or not it’s defined, rather than testing its value. Someother sim-
ilar inconsistencies (which may be bugs) are:

• UseImports andImportX11 are also Boolean (YES/NO) macros. However, ibmLib.rulesand
ibmLib.tmpl test each of them on the basis of whether or not they’re defined, rather than testing their
value.

• Motif.tmpl testsUseImports using #ifdef UseImports at one point and#if UseIm-
ports at another.

- 4 -

• Since anall:: target entry is now generated right at the beginning ofImake.tmpl, it’s no longer neces-
sary for theemptytarget:: to be generated near the end ofImake.tmpl. The latter entry can be
removed.

• The _XUsed() and_XUseCat() rules in Imake.rules seem to have problematic definitions.They
make decisions based on the value ofUseInstalledX11. But UseInstalledX11 is defined in
X11.rules, which is processed afterImake.rules.

• BUG? The leading comments insite.defappear to advise that theOS{Major,Minor,Teeny}Ver-
sion macros can be changed insite.def, and also that they should not be changed insite.def.

Program Changes

imake

imake now provides a means of yanking the operating system major, minor, and teeny version numbers
using theuname() system call. It then passes those values tocpp so that theOSMajorVersion,
OSMinorVersion, andOSTeenyVersion macros can be set automatically. This is good, because you
don’t hav eto set the values in your vendor files manually. Howev er, I think the method by which this is
done could be simpler. I’l l describe how it’s actually done, and then how I think it could be simplified.

To useuname() to get the OS version numbers, you add a section toimakemdep.hthat describes how to
process theuname() return value on your system.For instance, the FreeBSD section looks like this:

/* uname -r returns "x.y[.z]-mumble", e.g. "2.1.5-RELEASE" or "2.2-0801SNAP" */
define DEFAULT_OS_MAJOR_REV "r %[0-9]"
define DEFAULT_OS_MINOR_REV "r %*d.%[0-9]"
define DEFAULT_OS_TEENY_REV "r %*d.%*d.%[0-9]"

If theDEFAULT_OS_XXX_REV macros are defined,imake callsuname() and pulls apart the return value
using thescanf() patterns in the macro values. Thenit writes lines like the following to Imakefile.c:

#define DefaultOSMajorVersion 2
#define DefaultOSMinorVersion 1
#define DefaultOSTeenyVersion 5

By themselves, these definitions are not usable.So it’s necessary to modify your vendor file as well.In
R6.1, the OS version numbers were set in vendor files using constructs like these:

#ifndef OSMajorVersion
#define OSMajorVersion 2
#endif
#ifndef OSMinorVersion
#define OSMinorVersion 1
#endif
#ifndef OSTeenyVersion
#define OSTeenyVersion 0
#endif

For R6.3, these must be changed as follows:

#ifndef OSMajorVersion
#define OSMajorVersion DefaultOSMajorVersion
#endif
#ifndef OSMinorVersion
#define OSMinorVersion DefaultOSMinorVersion
#endif
#ifndef OSTeenyVersion
#define OSTeenyVersion DefaultOSTeenyVersion
#endif

- 5 -

The result is that whenimake runs, it passes definitions of theDefaultOSXXXVersion macros via
Imakefile.c, and those values are used to set theOSXXXVersion macros.

I think theuname() support is a good thing, but I suggest that the implementation could be simpler. Were
imake to write definitions intoImakefile.c for theOSXXXVersion macros, rather than for theDefault-
OSXXXVersion macros, it would be necessary only to put theuname() stuff in imakemdep.h. It
wouldn’t be necessary to change the vendor files at all.That’s because in R6.1 the vendor files were
already set up to allow theOSXXXVersion macros to be overridden by prior definitions.If imake defined
theOSXXXVersion macros itself, its definitions would take precedence.

This would allow the imake to provide override values for the version numbers, yet allow the vendor files to
be left just as they were in R6.1.As it is now, there is a tight dependency between modifyingimakemdep.h
and changing the vendor file and to match.

I’m curious as to why the additional complexity introduced by theDefaultOSXXXVersion macros was
used. Isthere some benefit to requiring a change to the vendor file whenimakemdep.his changed?

Suggestion: Those vendor files that have been changed to use theDefaultOSXXXVersion macros
should be "unchanged", andimake should define theOSXXXVersion macros instead.This would make
extending theuname() support mechanism to other systems an easier and less error-prone process
because fewer changes would be needed.

Another aspect of the currentuname() mechanism is that its use ofDefaultOSXXXVersion makes
the R6.3 configuration files incompatible with all previous versions ofimake, even recent R6.x versions.
The suggested change allows the R6.3 configuration files to continue to work with any R6.x version of
imake.

Question: How does one parse this bit of stuff f rom imake.c?

* 5. Start up cpp and provide it with this file.
* Note that the define for INCLUDE_IMAKEFILE is intended for
* use in the template file. This implies that the imake is
* useless unless the template file contains at least the line
* #include INCLUDE_IMAKEFILE

What should the phrase "the imake is useless" really be?"The resulting Makefile is useless"?

makedepend

makedependnow properly evaluates macros that are defined as hex constants. Formerly these always eval-
uated as zero.This meant that in a code fragment such as the following, CONST1 would evaluate as zero
andar.h would not be considered a dependency by makedepend:

#define CONST1 0x1

#if CONST1
#include <ar.h>
#endif

